# Importance Of Extreme Climate Events On Annual Pasture Production In South Eastern Australia



Ruchika Perera, Brendan Cullen and Richard Eckard

Faculty of Veterinary and Agricultural Sciences, University of Melbourne



## Relevance to pasture industry



- Australia has the most variable rainfall pattern (Love, 2005)
- SE Australia has cool temperate climate
- This climate is suitable for growing cool season pastures
- Pasture industry underpins sheep and dairy industry in this area
  - Cheap feed supply
- However, changing climate variability and extremes challenge pasture production and persistence



Pastures of Australia based on the limits to the adaptation of tropical and temperate pasture species (after Moore, 1970; Hill, 1996; B. Cook, personal communication)

#### Trends in historical climate







Annual mean temperature changes across Australia since 1910



**SOURCE**: State of the Climate, 2014. SOURCE: Bureau of Meteorology and CSIRO

# Significance



- Increased frequency of extreme climate events. eg: number of hot days
- Extreme climate events are likely to be detrimental to agricultural systems

#### Objectives:

- To develop a matrix of extreme climate indices using meteorological definitions and biological thresholds of pasture species
- To develop an approach to explain annual pasture yield variability using extreme climate indices and general climate statistics
- To identify which climate extremes are important in determining annual yields in SE Australia, and analyse their trends

#### Methodology – site selection and species composition



| Site      | Climate                            | Soil type     | Species composition              |
|-----------|------------------------------------|---------------|----------------------------------|
| Ellinbank | High rainfall,<br>Cool temperate   | Red Ferrosol  | Perennial ryegrass, white clover |
| Dookie    | Medium rainfall,<br>Warm temperate | Red Chromosol | Phalaris, Subterranean clover    |



Perennial ryegrass



White clover



Subterranean clover



**Phalaris** 

# Methodology



#### General climate statistics (15)

- Annual and seasonal rainfalls
- Annual and seasonal maximum temperatures
- Annual and seasonal minimum temperatures



Multiple regression analysis model fitting procedure

Simulated annual pasture yield (t DM/ha)

Extreme climate indices (9)

#### Results and Discussion





 Predictive power of the models (R<sup>2</sup>) have increased when the extreme climate indices are incorporated

## Results and Discussion



**Table:** Regression coefficients of the fitted models NS- Not significant , NA – Not applicable

|                 |                          | Dookie          |                             | Ellinbank       |                             |
|-----------------|--------------------------|-----------------|-----------------------------|-----------------|-----------------------------|
| Category        | Climate variable         | General climate | General and extreme climate | General climate | General and extreme climate |
|                 | Annual average rainfall  | 0.02            | 0.01                        | 0.01            | 0.01                        |
| General climate | Average Tmax -winter     | Ns              | 1.24                        | Ns              | Ns                          |
| General Climate | Average Tmax –spring     | Ns              | Ns                          | -0.64           | Ns                          |
|                 | CO <sub>2</sub>          | Ns              | 0.02                        | 0.04            | 0.04                        |
|                 | Severely dry months/yr   | NA              | -1.35                       | NA              | Ns                          |
|                 | Extremely dry months/yr  | NA              | -0.61                       | NA              | Ns                          |
| Extreme indices | Moderately wet months/yr | NA              | Ns                          | NA              | -0.44                       |
|                 | Extremely wet months/yr  | NA              | -1.16                       | NA              | -0.72                       |
|                 | Hot day duration         | NA              | Ns                          | NA              | -0.02                       |
|                 | (R <sup>2</sup> )        | 71%             | 89%                         | 52%             | 62%                         |

## Results and Discussion







#### Conclusions



 Extreme climate events are important in explaining annual pasture yield variability across SE Australia

Extreme events affect negatively on annual pasture yields

• Future climate projections indicate greater frequency of extreme climate events. It is vital that we gain a better understanding of the impact of extreme climate events on agricultural systems.



# Pasture growth simulation



#### **Inputs**

Pasture species

Perennial ryegrass, white clover, sub clover, phalaris

Soil properties

location soil characteristics

Climate

Daily climate data from BOM SILO database

CO<sub>2</sub> (ppm) — measured at Cape Grim Tasmania



## Development of extreme climate indices





Moderately wet months
(SPI 1.00 to 1.49)
Severely wet months
(SPI 1.50 to 1.99)
Extremely wet months
(SPI 2 and more)

Moderately dry months
(SPI -1.00 to -1.49)
Severely dry months
(SPI -1.5 to -1.99)
Extremely dry months
(SPI -2 and less)



