

Productivity, Simplicity,

Safety, Sustainability

The Evaluation of BOOSTER-Mag[™] in Field Processing Tomato Production

Robert van Merkestein, Liz Mann

18th Australian Agronomy Conference

September 2017, Ballarat

www.calix.com.au

Product:

- concentrated (50% w/w) magnesium hydroxide suspension
- magnesium carbonate ore and advanced mineral processing technology
- diluted and sprayed using conventional equipment (0.5 2 % a.i v/v)

Active:

- micron scale active particles 90% passing 20 micron
- nano-characteristics; high porosity and high energy surfaces
- bio-active; pathogen and insect pest inhibition ¹

Function:

- foliar fertiliser; augment magnesium where deficient
- crop protection; provide control of plant pests and pathogens²
- grower productivity, safety and sustainability

Safety, environment and residues:

Calix

- low human and aquatic toxicity ³, no phytotoxicity ¹
- non-hazardous and non-dangerous (Safe Work Australia), MRL exempt²

¹ Published studies of nano-MgO and Independent BOOSTER-Mag in-vitro and field evaluations

² Subject to APVMA registration (underway)

³ Public domain Mg(OH)₂ toxicology data. To be confirmed by acute toxicity (6 pack) study of BOOSTER-Mag (underway)

Efficacy Evaluations - Summary

Trial #	Location	Client	Crop	Target		Observations			
1	Australia	UNSW	-	T.S Mite		2015 Complete; Equiv. control c.f pyrethrum, no mite mortality			
2	France	Staphyt	Grape	Downy & P	owdery Mildew	2015 Complete;			
3	Philippines	FPA*	Corn	Yield		2016 Complete; 32% 个 in yield c.f .control			
4	Philippines	Grower	Rice	Yield & Ric	e Borer	2016 Complete; Borer damage limited to 40% c.f. control (>90% loss).			
5	Philippines	PhilRice*	Rice	Yield & Ric	ice Borer 2016 Complete; Borer damage limited to 40% c.f. control (>90% loss).				
6	France	Vivescia*	Corn	Corn Borer		2016 Complete; Inconclusive; insufficient pest incidence / pressure			
7	France	Compas*	Grape	Powdery I		s			
8	Australia	Peracto*	Egg Plant	Silver Leaf	Casa St	udios - consocutivo voars field testing			
9	Australia	Peracto*	Roses	Two spott	Case Si	dules - consecutive years held testing			
10	Australia	Peracto*	Cucurbits	Powdery {					
11	Australia	Peracto*	Cucurbits	Hemiptera	& Mosaic Vir.	equiv. statistically significant control of Thrips. 25% 个 in yield			
12	Australia	Peracto*	Grape	Powdery N	1ildew	rete; 40% (av) ↓ in disease c.f. control			
13	Australia	Peracto*	Grape	Downy Mil	dew	complete; Limited efficacy			
14	Australia	Peracto*	Grape	Botrytis		017 Complete; Equiv. control of botrytis c.f. in-market fungicides			
15	Australia	APTRC*	Tomato	Yield & Pes	sts - 3 farms	2016 Complete; 6% (av) \uparrow in yield, 67% (av) \downarrow in insect damage c.f control			
16	Australia	APTRC	Tomato	Yield & Pes	sts - 2 farms	2017 Complete; 50% \downarrow in conventional pesticide and equivalent yield			
17	Australia	Webb	Grape	Downy & P	owdery Mildew	2017 Complete; Complete substitution (Cu & S) without compromising yield			
18	Australia	Peracto*	In-vitro	Pseudomo	nas & Botrytis	2017 Complete; 100% bac. control, inhibition of spore germination & growth			
	Australia	Elanora	Turf- Golf	BF1 pathog	gen	Underway; Commenced May 2017			
	France	Compas*	Grape	Powdery &	Downy Mildew	Underway; Commenced May 2017			
	France	Vivescia*	Corn	Corn Borer	– 3 x 1 ha trials	Underway; Commenced June 2017			
	Australia	Peracto*	Tomato	Hemiptera	, Lepidoptera	Commencing Q4 2017			
	Australia	Peracto*	Cucurbits	Powdery N	lildew	Commencing Q4 2017			
	Australia	Peracto*	Grape	Botrytis		Commencing Q4 2017			
	Australia	Peracto*	Grape	Powdery N	lildew	Commencing Q4 2017			

* Denotes randomised split plot with multiple replicate trial protocol.

Year 1. Controlled field evaluation, designed and managed by APTRC and participating growers.

<u>Objective;</u> Quantify the effect of BOOSTER-Mag[™] foliar applications, <u>in addition</u> to conventional treatment. <u>Design;</u> Randomised Split Plot (four replicates).

Agronomic Management:

- Control; farmed conventionally (grower standard IPM)
- Trial; as per Control but with 3 x 1%v/v sprays B-Mag applications (1.5 kg /ha)

Spray Records.

Farm 2						
Booster-Mag	Fungicide	Insecticide	Insecticide			
		maldison, alpha-cypermethrin	22/12/2015			
	cuprous oxide		22/12/2015			
BOOSTER-Mag			8/01/2016			
		maldison, alpha-cypermethrin	8/01/2016			
	cuprous oxide		8/01/2016			
BOOSTER-Mag			18/01/2016			
		abamectin	21/01/2016			
	cuprous oxide		21/01/2016			
	azoxystrobin		7/02/2016			
		methomyl, acephate	7/02/2016			
	mancozeb		19/02/2016			
		alpha-cypermethrin, dimethoate	19/02/2016			
BOOSTER-Mag			20/02/2016			

- Chemical Pest Control in Integral
- Significant differences in pesticide usage patterns.

Farm 3					
Booster-Mag	Fungicide	Insecticide			
		chlorpyriphos, maldison, bifenthrin	17/11/2015		
		chlorpyriphos, bifenthrin	21/11/2015		
		chlorpyriphos, bifenthrin	24/11/2015		
		alpha-cypermethrin	2/12/2015		
	phosphorous acid		2/12/2015		
		maldison, alpha-cypermethrin	3/12/2015		
	phosphorous acid		3/12/2015		
		spirotetramat	11/12/2015		
	cuprous oxide		22/12/2015		
		spirotetramat, methomyl	24/12/2015		
		maldison	8/01/2016		
		alpha-cypermethrin, methomyl	9/01/2016		
Booster-Mag			9/01/2016		
	phosphorous acid		21/11/2015		
	phosphorous acid	24/11/2015			
	phosphorous acid	2/01/2016			
	cuprous oxide	8/01/2016			
	sulphur	9/01/2016			
	sulphur		16/01/2016		
		methomyl, lambda-cyhalothrin	16/01/2016		
Booster-Mag			20/01/2016		
		abamectin	21/01/2016		
	phosphorous acid		24/01/2016		
	sulphur		26/01/2016		
		methomyl, alpha-cypermethrin	26/01/2016		
	azoxystrobin		7/02/2016		
		abamectin	7/02/2016		
	dithane, iprodione, sulpher		15/02/2016		
		acephate	20/02/2016		
Booster-Mag			22/02/2016		
	iprodione		26/02/2016		
	•	indoxacarb, methomyl	26/02/2016		
		bifenthrin, sulfoxaflor	3/03/2016		
	triadimenol		3/03/2016		
		bifenthrin, methomyl	14/03/2016		
	dithane, sulphur		14/02/2016		

Year 1; Three Farm Hand Harvest Results – all parameters.

Control	Red (kg)	Green (kg)	Insect (kg)	BER (kg)	Total Yield (kg)	Brix (°Bx)
Farm 1.	40.74	3.18	0.06	0.34	44.31	5.00
Farm 2.	38.84	1.15	1.46	0.46	41.91	5.18
Farm 3.	47.65	6.73	0.88	3.55	58.80	5.05
AVERAGE (3 sites)	42.41	3.68	1.20	1.45	48.34	5.08
Standard Deviation	4.64	2.82	0.70	1.82	9.14	0.09
Trial (B-Mag)	Red (kg)	Green (kg)	Insect (kg)	BER (kg)	Total Yield (kg)	Brix (°Bx)
Farm 1.	42.61	2.31	0.03	0.59	45.54	5.20
Farm 2.	40.78	1.19	1.01	0.31	41.69	5.10
Farm 3.	51.78	6.60	0.15	0.73	59.25	4.60
AVERAGE (3 sites)	45.05	3.37	0.40	0.54	48.83	4.97
Standard Deviation	5.89	2.86	0.54	0.21	9.23	0.32
Statistical Significance	NSD	NSD	NSD	NSD	NSD	NSD
% Change c.f. Control	6%	-9%	-67%	-63%	1%	-2%

• no statistically significant differences at a 95% confidence level.

Control Insect (kg)

- numerical trends common to all three farms;
 - ripe and unblemished fruit higher in trial areas
 - insect damaged fruit lower in trial areas.

• soil chemistry or nutrient uptake results do not readily account for observed trends

Outcome; commercial grower commitment to further, expanded scale and scope evaluation.

2016 / 2017; Field Processing Tomato, Vic.

Year 2. Comparative evaluation undertaken with support from APTRC (crop scouting & hand harvest).

Objective:

Quantify farm productivity (yield, yield quality and overall pesticide usage) when BOOSTER-Mag is used <u>as a base treatment.</u>

Design; 7 ha Control, 5 ha Trial.

Agronomic Management:

- Control; pesticide treatment according to pest / disease pressure and industry thresholds and agronomist advice.
- Trial; BOOSTER-Mag sprays every 2 weeks and additional intervention according to pest & pathogen pressure.

Beneficial Insects and Parasitism - crop scouting:

- widespread evidence of spiders in trial field (none in control)
- heliothis (moth) eggs collected and egg viability assessed
- no material difference in relative pest and pathogen pressure

Year 2. Productivity Assessment

	Sprays.	Pesticide Sprays.	Products Used.	Total Cost (\$ / ha)	Payable Fruit (Tne. / ha)
Control	9	8	cypermethrin, methomyl, maldisor abimectin phosphoric acid, cuprous ox. iprodione, mancozeb, triadimenol ethephon	n, \$ 509	89
Trial	10	4	BOOSTER-Mag, indoxicarb & methomyl, abimectin cuprous ox., mancozeb	\$ 315	89

- half as many pest & disease pressure threshold events
- \$194 / ha (38%) reduction in agronomic management costs
- equivalent payable yield
- enhanced safety and sustainability through reduced hard chemical usage

Outcome; commercial grower commitment to 40 ha / full farm evaluation - October 2017.

BOOSTER-Mag nano-active Mg(OH)₂:

Calix

- Bio-activity; tendency for reduced agricultural insect pests and disease pressure
- Productivity; demonstrated ability to reduce agronomic management costs without compromising yield
- Simplicity, Safety and Sustainability; non-toxic, non-phytotoxic and likely to be MRL exempt
- BOOSTER-Mag is highly complementary to IPM methodology

Our Aims and Activity.

- Continue to develop BOOSTER-Mag:
 - efficacy trials (lab, controlled and grower direct) in grape, flowering veg and tomato
 - registration

Calix is very open to collaboration to help achieve this...